Gröbner Bases Over a "Dual Euclidean Domain".

Noncommutative rings an their applications
Lens 1-4 july 2013,

Djiby Sow

André Saint Eudes Mialébama Bouesso

Université Cheick Anta Diop
Laboratoire d'Algèbre, de Cryptographie, de Géométrie Algébrique et Applications (LACGAA)

Dakar Sénégal

Membership problem

Let A be a commutative ring and I an ideal of A. Let $a \in A$. How to answer to the question

$$
" a \in I \quad ?
$$

We know that if $I=\langle b\rangle, b \neq 0$, then $a \in I \Leftrightarrow \exists c \in I / a=b c \Leftrightarrow$ b / a.
In this case, how to verify if the division b / a holds?
If $A=K[X]$ is a principal ideal ring in one variable over a field K, then each ideal I is generated by a polynomial $g: I=\langle g\rangle$. Let $f \in A=K[X]$, then by Euclidean division algorithm, there exists a unique pair $(q, r) \in K[X]^{2}$ such that $f=q g+r$.
Therefore $f \in I \Leftrightarrow r=0$

Now, the problem is "how to generalize this result to the multivariate polynomials ring $K\left[X_{1}, \ldots, X_{n}\right]$?" This ring is factorial and noetherian but not principal.
This problem was solved independently by Bruno Buchberger and Hironaka Heisuk. But the main popular result is the problem of Buchberger because he provides an efficient algorithm. B. Buchberger (1965), "An algorithm for finding a basis for the residue class ring of a zero-dimensional polynomial ideal", Ph.D. Thesis, Univ. of Innsbruck, Austria, Math., Inst.

Let I be an ideal in $K\left[X_{1}, \ldots, X_{n}\right]$ then $I=\langle F\rangle$ where $F=$ $\left\{f_{1}, \ldots, f_{t}\right\}$ is a finite generating set.
Let $f \in K\left[X_{1}, \ldots, X_{n}\right]$. Is-it possible to divide f by F (an ordered set)?
Yes, by defining first an admissible order on the set \mathbb{M} of all monomials of $K\left[X_{1}, \ldots, X_{n}\right]$.
In this case, if the division yields $f=f_{1} g_{1}+\ldots+f_{t} g_{t}+r$ with a suitable r, is-it true that

$$
" f \in I \Leftrightarrow r=0 ? "
$$

The answer is "false in general" because the result depends on the order on F. We denote

$$
r=\bar{f}^{F, \text { ord }}
$$

Now, how to do?
Bruno Buchberger, have proposed a wonderful result.
He proved that "it is always possible to transform the generating set F in a new generating set G such that

$$
f \in I \Leftrightarrow \bar{f}^{G, \text { ord }}=0
$$

and this result don't depend on the order on G. (Note that the construction of G depends on the admissible order on the set \mathbb{M} of monomials).
This generating set G is called a Gröbner basis.
Moreover, Buchberger have proposed an algorithm which allow to compute, in a finite number of steps, a Gröbner basis G of an ideal I knowing a finite generating set F of I.

In "Introduction to Gröbner Bases" Talk at the Summer School Emerging Topics in Cryptographic Design and Cryptanalysis 30 April - 4 May, 2007, Samos, Greece Bruno Buchberger makes the following remarks on the motivation of Gröbner bases
(1) Dozens of (difficult) problems turned out to be reducible to the construction of Gröbner bases.
(2) (1000 papers, 10 textbooks, 3000 citations in Research Index, extra entry 13P10 in AMS index).
(3) This is based on the fact that Gröbner bases have many nice properties (e.g. canonicality property, elimination property, syzygy property).
(4) For the construction of Gröbner bases we have (an) algorithm(s), [BB 1965, ...]
(5) A "beautiful" theory : The notion of Gröbner bases and the algorithm is easy to explain, but correctness is based on a non-trivial theory.

Some results on Gröbner bases over rings

Many researchers have generalized this work in different ways over rings. Here we present some results on Gröbner bases over rings.
(1) In 1984, Buchberger proposed an algorithm and some technical developments for designing Gröbner basis over reduction rings.
(2) In 1988, D. Kapur and A. Kandri-rody presented an algorithm for computing a commutative Gröbner basis over an Euclidean domain;
(3) In 1993, Stifter presented an algorithm for computing a commutative Gröbner basis in a module over reduction rings with zeros divisors;
(9) In 2000, L. Bachmair and A. Tiwari presented an algorithm for computing Gröbner basis over a commutative noetherian rings with additional conditions with zero divisors;
(5) In 2006, I. Yengui presented an algorithm for computing a dynamical commutative Gröbner basis (over a noetherian valuation ring and over a principal ideal ring).

Some results on Gröbner bases over rings

(1) In 2007, F. Pauer presented a method for computing commutative Gröbner bases over rings of differential operators and polynomial rings over commutative noetherian rings with additional conditions;
(2) 2009, D. Kapur and Y. Cai, presented an algorithm for computing commutative Gröbner bases over $D-A$ rings with zero divisors.
(3) In 2010, A. Hadj Kacem and I. Yengui proposed an algorithm for computing a dynamical commutative Gröbner bases over a Dedeking ring with zero divisors.
(4) In 2012, A. Mialébama and D. Sow presented an algorithm for computing noncommutative Gröbner bases over some class of rings (To be published in "Communications in Algebra");

Main gaol of this talk

Unfortunately, there doesn't exist a general method for computing commutative Gröbner bases over an arbitrary ring with zero divisors. Each method depends on the properties of the ring. For instance all methods introduced above don't cover the rings of the form $A[\varepsilon]=\frac{A[X]}{\left\langle X^{2}\right\rangle}$ where $\varepsilon=\bar{X}, A$ is an arbitrary ring.
That's why we decide to study this case with different hypothesis on A.
Note that the particular case where $A=\mathbb{F}_{2}$ is used in coding theory in this workshop.
(1) In 2012, André Mialébama proposed a method for computing commutative Gröbner bases over $V[\varepsilon]$, with $\varepsilon^{2}=0$ where V is a noetherian valuation domain (To be published in international journal of algebra).
(2) In 2013, André Mialébama and Djiby Sow proposed a method for computing commutative Gröbner bases over $V[\varepsilon]$, with $\varepsilon^{2}=0$ where
V is a noetherian valuation ring with zero divisors :
this method solve partially an open question left by Kapur and Cai in 2009).

This talk

(1) In 1988, D. Kapur and A. Kandri-rody presented an algorithm for computing a commutative Gröbner basis over an Euclidean domain by introducing an euclidean division on the coefficients in the basic ring;
(2) 2009, D. Kapur and Y. Cai, presented an algorithm for computing commutative Gröbner bases over $D-A$ rings with zero divisors by introducing the possibility to compute GCD of the coefficients in the basic ring.
(3) In this work, André Mialébama and Djiby Sow propose a method for computing commutative Gröbner bases over $V[\varepsilon]$, with $\varepsilon^{2}=0$ where \underline{V} is an Euclidean domain by introducing a pseudo-euclidean division on the coefficients in the basic ring. The technique is different from previous methods.
This work can be seen as generalization in new kind of rings with zeros divisors.

PART I

Arithmetic in $A[\varepsilon]$

Arithmetic in $A[\varepsilon]$

Let A be an Euclidean domain, we mean by $A[\varepsilon]$ the ring whose elements are of the form $a+\varepsilon b$ satisfying to $\varepsilon^{2}=0$ where $a, b \in A$. This ring is called here, "Dual Euclidean Domain". If $z=$ $a+\varepsilon b \in A[\varepsilon]$, then we denote by $\Re(z)=a$ the real part of z (respectively $\Im(z)=b$ the imaginary part of z).

Definition

(1) $z=a+\varepsilon b \in A[\varepsilon]$ is invertible if and only if $\operatorname{Re}(z)=a$ is invertible in A.
(2) $z=a+\varepsilon b \in A[\varepsilon]$ is a zero divisor if and only if $\operatorname{Re}(z)=0$.

Arithmetic in $A[\varepsilon]$

Notation

We denote by $J_{\varepsilon}=\varepsilon \cdot A[\varepsilon]=\{z \in A[\varepsilon] / \operatorname{Re}(z)=0\}$ the set of zero divisors in $A[\varepsilon]$.

Definition

$A[\varepsilon]$ is called pseudo-Euclidean if it comes together with a map

$$
\varphi: A[\varepsilon] \longrightarrow \mathbb{N}, z \mapsto \varphi(z)
$$

called pseudo-norm satisfying the following properties :
(1) $\varphi(z) \geq 0 \forall z \in A[\varepsilon]$.
(2) $\forall z \in A[\varepsilon], t \notin J_{\varepsilon}$ we have $\varphi(z) \leq \varphi(z t)$.
(3) Let $z \in A[\varepsilon]$ and $t \notin J_{\varepsilon}$ then there exists a pair $(q, r) \in A[\varepsilon]^{2}$ such that $z=t q+r$ where $r=0$ or $\varphi(r)<\varphi(t)$.

Arithmetic in $A[\varepsilon]$

Definition

Let (B, ϕ) be an Euclidean ring.

- ϕ is said multiplicative if $\phi(a \cdot b)=\phi(a) \phi(b) \forall a, b \in B$.
- ϕ is said quasi-additive if $\phi(a \cdot b)=\phi(a)+\phi(b) \forall a, b \in B$.

Theorem : Main result 1

If (A, ϕ) is an Euclidean ring where ϕ is either multiplicative or quasi-additive, then $(A[\varepsilon], \varphi)$ is a pseudo-Euclidean ring, where $\varphi(z)=\phi(\operatorname{Re}(z)) \forall z \in A[\varepsilon]$.

Arithmetic in $A[\varepsilon]$

Algorithm of pseudo-division

Given two dual numbers $z \in A[\varepsilon]$ and $t \in A[\varepsilon] \backslash J_{\varepsilon}$ there exists $q, r \in A[\varepsilon]$ such that $z=t \cdot q+r$ where $r=0$ or
$\phi(\operatorname{Re}(r))<\phi(\operatorname{Re}(t))$, where ϕ is a norm in A.
Input : $z \in A[\varepsilon]$ and $t \in A[\varepsilon] \backslash J_{\varepsilon}$.
Output: $(q, r) \in A[\varepsilon]^{2}$ such that $z=t \cdot q+r$.
Initialize $: a_{1}:=\operatorname{Re}(z \cdot \bar{t}), a_{2}:=\operatorname{Im}(z \cdot \bar{t})$ and $n:=t \cdot \bar{t}$;
For i from 1 to 2 , do

$$
a_{i}=q_{i} \cdot n+r_{i} \text { where } \phi\left(r_{i}\right)<\phi\left(q_{i}\right)
$$

end do;
set $q=q_{1}+\varepsilon q_{2}$ and $r=z-t \cdot q$.

Arithmetic in $A[\varepsilon]$

Example

(1) Set $A=\mathbb{Z}$ and let us divide in
$\mathbb{Z}[\varepsilon], z=8+5 \varepsilon$ by $t=3+7 \varepsilon$, we find $q=2-4 \varepsilon$ and $r=2+3 \varepsilon$.
(2) Set $A=\mathbb{Q}[t]$ where and let us divide in $\mathbb{Q}[t][\varepsilon], z=$ $\left(3 t^{3}+3 t-t\right)+\varepsilon\left(6 t^{3}+10 t^{2}+t\right)$ by $T=(t+1)+\varepsilon(2 t+3)$.
We have $\bar{T}=(t+1)-\varepsilon(2 t+1), z \cdot \bar{T}=$
$\left(3 t^{4}+6 t^{3}+2 t-t\right)+\varepsilon\left(t^{3}+4 t^{2}+4 t\right)=a_{1}+\varepsilon a_{2}$ and
$n=T \cdot \bar{T}=(t+1)^{2}$. By the Euclidean division in $\mathbb{Q}[t]$, we find $a_{1}=(t+1)^{2}\left(3 t^{2}-1\right)+(t+1)$ and
$a_{2}=(t+1)^{2}(t+2)+(-t-2)$. Set
$q_{1}=3 t^{2}-1, q_{2}=t+2, q=q_{1}+\varepsilon q_{2}=\left(3 t^{2}-1\right)+\varepsilon(t+2)$ and $r=z-q \cdot T=1-2 \varepsilon$.

Arithmetic in $A[\varepsilon]$

Theorem

Let $z_{1}, z_{2} \in A[\varepsilon], t \in A[\varepsilon] \backslash J_{\varepsilon}$ such that $z_{1} \equiv z_{2} \bmod t$. Then the pseudo-division algorithm outputs two remainder r_{1} and r_{2} such that $r_{1}=r_{2}$

Proposition

Let $y \in A[\varepsilon]$ and $t \in A[\varepsilon] \backslash J_{\varepsilon}$ such that $\varphi(y)<\varphi(t)$ then all $z \equiv y \bmod t$ are reduced to y.

Both previous results guaranties that the algorithm of pseudodivision given above yields a unique smallest remainder relatively to our pseudo-norm.

Arithmetic in $A[\varepsilon]$

Definition

Let $u, v \in A$, we say that u and v are coprime, if whenever d divides u and v then d is a unit.

Lemma

An element $z=a+\varepsilon b=(1+\varepsilon q)(a+\varepsilon r) \in A[\varepsilon]$ is irreducible if and only if a is irreducible or $a=c^{n}$ where c is irreducible in A and c and r are coprime.

PART II

PART II
 Gröbner bases over $A[\varepsilon]\left[X_{1}, \ldots X_{n}\right], \quad \varepsilon^{2}=0$

Gröbner bases

We denote by $R=A[\varepsilon]\left[X_{1}, \ldots, X_{m}\right]$ the ring of multivariate polynomials with coefficients in $A[\varepsilon]$ and by \mathbb{M} the set of all monomials in R.

Definition

A total order $<$ in \mathbb{M}, is said to be a monomial order if the following conditions hold :

- < is a well ordering;
- If $X^{\alpha}<X^{\beta}$ then $X^{\alpha+\gamma}<X^{\beta+\gamma}$ for $\alpha, \beta, \gamma \in \mathbb{N}^{n}$.

Definition

Lexicographic order : we say that $X^{\alpha}>_{\text {lex }} X^{\beta}$ if the first left non zero component of $\alpha-\beta$ is >0.

Gröbner bases

Let $f=\sum z_{\alpha} X^{\alpha}$ be a nonzero polynomial in $R=A[\varepsilon]\left[X_{1}, \ldots, X_{n}\right]$.
Let $I=\left\langle{ }_{f}^{\alpha}, \ldots, f_{s}\right\rangle$ be a finitely generated ideal of R and let fix a monomial order $<$, then :

Definition

(1) The X^{α} (respectively the $z_{\alpha} X^{\alpha}$) are called the monomials (respectively the terms) of f.
(2) The multidegree of f is $\operatorname{mdeg}(f):=\max \left\{\alpha / z_{\alpha} \neq 0\right\}$.
(3) The leading coefficient of f is $L c(f):=z_{\mathrm{mdeg}}(f)$.
(c) The leading monomial of f is $\operatorname{Lm}(f):=X^{\operatorname{mdeg}(f)}$.
(6) The leading term of f is $L t(f):=L c(f) \cdot L m(f)$.
© $\langle L t(I)\rangle:=\langle L t(g) / g \in I \backslash\{0\}\rangle$.

Gröbner bases

Theorem: Main result 2

Let $<$ be a monomial order and $f_{1}, \ldots, f_{s} \in R \backslash\{0\}$. Then there exists $q_{1}, \ldots, q_{s}, r \in R$ such that $f=\sum_{i=1}^{s} q_{i} f_{i}+r$ with $\operatorname{mdeg} f \geq \operatorname{mdeg}\left(q_{i} f_{i}\right)$ if $q_{i} f_{i} \neq 0$ and $r=0$ or each monomial occurring in r is not dividable by any of $\operatorname{Lm}\left(f_{i}\right) \forall 1 \leq i \leq s$.

Gröbner bases

Division algorithm

Input：f_{1}, \ldots, f_{s}, f and $<$ ．
Output：Q_{1}, \ldots, Q_{s}, R ．
Initialization ：$Q_{1}:=0, \ldots, Q_{s}:=0 ; R:=0$ and $p:=f$ ．
While $p \neq 0$ do ：

$$
\begin{aligned}
& i:=1 \\
& \text { not divisionoccured } \\
& \text { while } i \leq s \text { and not divisionoccured do } \\
& \quad \text { If } \operatorname{Lm}\left(f_{i}\right) \text { divides } \operatorname{Lm}(p) \text { in } \mathbb{M} \text {, by }
\end{aligned}
$$

pseudo－division do $L c(p)=q_{i} L c\left(f_{i}\right)+r_{i} \in A[\varepsilon]$ then，set

$$
\begin{aligned}
& Q_{i}:=Q_{i}+q_{i} \frac{\operatorname{Lm}(p)}{\operatorname{Lm}\left(f_{i}\right)} \\
& p:=Q_{i}-\left(q_{i} \frac{\operatorname{Lm}(p)}{\operatorname{Lm}\left(f_{i}\right)}+r_{i}\right) f_{i}
\end{aligned}
$$

Else

$$
i:=i+1
$$

If not divisionoccured then

$$
r:=r+L t(p) ; p:=p-L t(p)
$$

Gröbner bases

Example $(A=\mathbb{Z})$

Let $R=\mathbb{Z}[\varepsilon][x, y]$ be a multivariate polynomials ring with respect to $x>_{\text {lex }} y$ and $f=2 x^{2} y-(3-2 \varepsilon) y, f_{1}=$ $(2+3 \varepsilon) x^{2}+3 \varepsilon x, f_{2}=(3-\varepsilon) x y+(2+5 \varepsilon) y^{2}$. Let us divide in $\mathbb{Z}[\varepsilon] f$ by $\left\{f_{1}, f_{2}\right\}$, we find $f=[(1-\varepsilon) y] f_{1}-\varepsilon f_{2}+\left[2 \varepsilon y^{2}+(-3+2 \varepsilon) y\right]$.

Gröbner bases

Example $(A=\mathbb{Q}[t])$

Let $R=\mathbb{Q}[t][\varepsilon][x, y]$ be a multivariate polynomials ring with respect to $x>_{\text {grlex }} y$ and
$f=\left[2 \varepsilon\left(t^{2}-1\right)(t+1)\right] x^{2} y^{2}+[5 t-3 \varepsilon(t+2)] x y, f_{1}=$
$\left[2(t+1)^{2}+3 \varepsilon\right] x^{2}-\varepsilon(t+1) y, f_{2}=\varepsilon(t-1) y^{2}+(2+\varepsilon t) x$. Let us divide f by $\left\{f_{1}, f_{2}\right\}$, we find
(1) $f=\varepsilon(t-1) y^{2} \cdot f_{1}+[5 t-3 \varepsilon(t+2)] x y$ if we start the division by f_{1}.
(2) $f=-2 t \varepsilon x \cdot f_{1}+\left[2(t+1)^{2}+3 \varepsilon\right] x^{2} \cdot f_{2}+2 \varepsilon(t+1)[x y-y]$ if we start the division by f_{2}.

Gröbner bases

Definition

A subset $G=\left\{g_{1}, \ldots, g_{t}\right\}$ of an ideal $I \subset R$ is called Gröbner basis for I with respect to a monomial order $<$ if $I=\langle G\rangle$ and $\langle L t(I)\rangle=\langle L t(G)\rangle$.

Let $f \neq g \in R=A[\varepsilon]\left[X_{1}, \ldots, X_{m}\right]$ such that $L c(f)=\left(a_{1}+\right.$ $\left.\varepsilon b_{1}\right) X^{\alpha}$ and $L c(f)=\left(a_{2}+\varepsilon b_{2}\right) X^{\beta}$, and consider a monomial order $>$. Let $\gamma \in \mathbb{N}^{n}$ with $X^{\gamma}=\operatorname{lcm}\left(X^{\alpha}, X^{\beta}\right)$, the S-polynomial of f and g is given by the combination :
(1) If $f \neq g$

$$
S(f, g)=\left\{\begin{array}{l}
\left(a_{2}+\varepsilon b_{2}\right) X^{\gamma-\alpha} f-\left(a_{1}+\varepsilon b_{1}\right) X^{\gamma-\beta} g \text { if } a_{1} \text { or } a_{2} \neq 0 \\
\frac{b_{2}}{\operatorname{gcd}\left(b_{1}, b_{2}\right)} X^{\gamma-\alpha} f-\frac{b_{1}}{\operatorname{gcd}\left(b_{1}, b_{2}\right)} X^{\gamma-\alpha} g \text { if } a_{1}=a_{2}=0 .
\end{array}\right.
$$

(2) If $f=g$ then

$$
S(f, f)=\left\{\begin{array}{l}
\varepsilon f \text { if } L c(f) \in J_{\varepsilon} \text { i.e } a_{1}=0 \\
0 \text { if not. }
\end{array}\right.
$$

Gröbner bases

Example

In $R=\mathbb{Z}[\varepsilon][x, y]$ with $x>_{\text {lex }} y$, we consider two polynomials
$f_{1}=3 \varepsilon x^{2}+(2-\varepsilon) x y, f_{2}=(4+3 \varepsilon) x y^{2}-5 \varepsilon y^{2}$, then :
$S\left(f_{1}, f_{1}\right)=\varepsilon f_{1}=2 \varepsilon x y$;
$S\left(f_{1}, f_{2}\right)=(4+3 \varepsilon) y^{2} f_{1}-3 \varepsilon x f_{2}=(8+2 \varepsilon) x y^{2}$.
Let $f_{3}=6 \varepsilon y^{4}+(3-5 \varepsilon) y^{2}$ we have
$S\left(f_{1}, f_{3}\right)=2 y^{4} f_{1}-x^{2} f_{3}=(3-5 \varepsilon) x^{2} y^{2}+2(2-\varepsilon) x y^{5}$.

Gröbner bases

Lemma

Let $<$ be a monomial order, and
$f_{1}, \ldots, f_{s} \in R=A[\varepsilon]\left[X_{1}, \ldots, X_{m}\right]$ such that $\operatorname{mdeg}\left(f_{i}\right)=\gamma \in \mathbb{N}^{n}$ for each $1 \leq i \leq s$. If $\operatorname{mdeg}\left(\sum_{i=1}^{s} z_{i} f_{i}\right)<\gamma$ for some
$z_{1}, \ldots, z_{s} \in A[\varepsilon]$, then there exists $t \in A[\varepsilon] \backslash J_{\varepsilon}$ such that $t \sum_{i=1}^{s} z_{i}$
S-polynomials $S\left(f_{i}, f_{j}\right)$ for $1 \leq i \leq j \leq s$. Furthermore, each $S\left(f_{i}, f_{j}\right)$ has multidegree $<\gamma$.

This lemma is the key to prove the following theorem.

Gröbner bases

Theorem : Main result 3

Let $<$ be a monomial order and $G=\left\{g_{1}, \ldots, g_{s}\right\}$ be a finite set of polynomials of $R=A[\varepsilon]\left[X_{1}, \ldots, X_{m}\right]$. Let $I=\langle G\rangle$ be an ideal of R, then G is a Gröbner basis for I if and only if $\overline{S\left(g_{i}, g_{j}\right)}{ }^{G}=0$, for $1 \leq i \leq j \leq s$.

Since $A[\varepsilon]$ is noetherian, then $R=A[\varepsilon]\left[X_{1}, \ldots, X_{m}\right]$ is also noetherian therefore this theorem allows to compute a Gröbner basis for an ideal of R in finite number of steps).

Gröbner bases

(Buchberger's algorithm)

Input : $g_{1}, \ldots, g_{s} \in T$ and $<$ a monomial order.
Output : a Gröbner basis G for $I=\left\langle g_{1}, \ldots, g_{s}\right\rangle$ with $\left\{g_{1}, \ldots, g_{s}\right\} \subseteq G$
$G:=\left\{g_{1}, \ldots, g_{s}\right\}$
REPEAT
$G^{\prime}:=G$
For each pair g_{i}, g_{j} in G^{\prime} do
$S:=\overline{S\left(g_{i}, g_{j}\right)}{ }^{G^{\prime}}$
If $S \neq 0$ THEN $G:=G^{\prime} \cup\{S\}$
UNTIL $G=G^{\prime}$

Gröbner bases

Example

$R=\mathbb{Z}[\varepsilon][x, y], I=\left\langle f_{1}=3 \varepsilon x^{2}+(2-\varepsilon) x y, f_{2}=(4+3 \varepsilon) x y^{2}-5 \varepsilon y^{2}\right\rangle$.
Let us construct a Gröbner basis for I w.r.t $x>_{\text {lex }} y$.
Set $g_{1}:=f_{1}, g_{2}:=f_{2}$ and $G:=\left\{g_{1}, g_{2}\right\}$. We have :

- $S\left(g_{1}, g_{1}\right)=\varepsilon g_{1}=2 \varepsilon x y$ and $\overline{S\left(g_{1}, g_{1}\right)}{ }^{G}=2 \varepsilon x y=g_{3}$, put $G:=\left\{g_{1}, g_{2}, g_{3}\right\}$;
- $S\left(g_{1}, g_{3}\right)=2 y f_{1}-3 x f_{3}=(4-2 \varepsilon) x y^{2}$ and ${\overline{S\left(g_{1}, g_{3}\right)}}^{G}=-\varepsilon x y^{2}=g_{4}$, put $G:=\left\{g_{1}, g_{2}, g_{3}, g_{4}\right\}$;
- $S\left(g_{1}, g_{4}\right)=(4-2 \varepsilon) y^{2} g_{1}-3 \varepsilon x g_{4}=8 x y^{3}$ and ${\overline{S\left(g_{1}, g_{4}\right)}}^{G}=0$;
- $S\left(g_{1}, g_{2}\right)=4(1-\varepsilon) y g_{1}-3 \varepsilon x g_{7}=4(2-3 \varepsilon) x y^{3}$ and $\overline{S\left(g_{1}, g_{2}\right)}{ }^{G}=0 ;$
- ${\overline{S\left(g_{2}, g_{3}\right)}}^{G}={\overline{S\left(g_{3}, g_{4}\right)}}^{G}={\overline{S\left(g_{3}, g_{3}\right)}}^{G}={\overline{S\left(g_{4}, g_{4}\right)}}^{G}=0$

Thus $G=\left\{3 \varepsilon x^{2}+(2-\varepsilon) x y,(4+3 \varepsilon) x y^{2}-5 \varepsilon y^{2}, 2 \varepsilon x y,-\varepsilon x y^{2}\right\}$ is a Gröbner basis for I w.r.t $x>_{\operatorname{lex}} y$.

Open problem by Kapur and Cai in 2009

Consider the ring $A=\frac{\mathbb{F}_{2}[X, Y]}{\left\langle X^{2}-X, Y^{2}-Y\right\rangle}$.
Let $Z=X Y+X+Y+1$, then X and Y belong to the annihilator of Z. The $\operatorname{gcd}(X, Y) \neq 1$? may not be defined (or it may not be possible to define division of one parameter by another parameter).
Therefore how to generalize Buchberger's algorithm for such quotient rings?.
This an open problem of Kapur and Cai in :
Deepak Kapur and Yongyang Cai "An Algorithm for Computing a Gröbner Basis of a Polynomial Ideal over a Ring with Zero Divisors" Math.comput.sci. 2 (2009), 601-634 (2009) Birkhauser Verlag Basel Switzerland 1661-8270/040601-34, published online December 7, 2009 DOI 10.1007/s11786-009-0072-z

Thank you for your attention!

